
© SCS

A MULT I-AGENT ARCHITECTURE FOR AGENTS CLUSTERING

Roland Coma
Gaële Simon

Michel Coletta
Computer Science Laboratory of Le Havre (LIH)

rue Philli pe Lebon, 76058 Le Havre Cedex,
France

E-mail: roland.coma@wanadoo.fr, gsimon@iut.univ-lehavre.fr, michel.coletta@iut.univ-lehavre.fr

KEYWORDS
Agents, Organizations, Clustering, Ants algorithms, Data
streams.

ABSTRACT

In this paper, a method for dynamic clustering of agents is
presented. The needs, the constraints and the particularities
of this kind of clustering are presented. It is then shown that
standard clustering methods are not suited to theses
constraints. Shared requirements with clustering methods for
data streams are presented. Then a multi-agent architecture
supporting dynamic clustering of agents and satisfying most
of these requirements is described. This architecture couples
an ants algorithm with cluster agents helping ants to
converge more quickly. This architecture is being used in a
complex multi-agent system whose goal is to help to manage
industrial risks.

INTRODUCTION

Why Clustering Agents ?

The work presented in this paper takes place in the context of
the automatic analysis of an agents population with explicit
and/or implicit organizations. Explicit organizations are
statically defined during the design of the system, as in
Aalaadin model (Ferber and Gutknecht 1998) with groups
and roles. On the contrary, implicit organizations appear
during the system execution. As a consequence, each agent
may interact with other agents according to these
organizations. Moreover, each agent is supposed to maintain
a set of variables which reflect its current internal state. For
example, these variables can represent the number of its
communications, its reinforcement value (for eco-agents
(Ferber and Jacopin 1991) or agents with learning
capabiliti es), or its position in a situated environment (e.g.
Ants (Lumer and Faieta 1994)). In the sequel, these
variables will be called measures. The definition and the
choice of these measures is another research problem which
is not studied in this paper.

The problem we are interested in is to analyze and extract
information about the global behavior of the agents
population using the population description and the agents
measures. More precisely, our goal is to build tools allowing
to characterize the global state of the population instead of
the different agents states. This problem is often encountered
when developing multiagent systems, especially using multi-

layers architectures like in (Marcenac 1997). Indeed, these
different layers are usually used to reason on the problem to
solve at different abstraction levels. The global state of each
layer often represents a particular abstraction of the problem
to solve. In order to allow the higher layer to reason about
this abstraction, this global state must be summarized and
reified. In other words, the problem is to establish a bijection
between the needed abstraction and the agents population
representing this abstraction using a characterization of the
global state of this agents population.

This problem must also be solved when a multiagent system
requires a scale change. For instance, in (Bertelle et al.
2000), a multiagent system is used to represent a fluid flow,
like rivers. In this context, each agent represents a fluid
particle interacting with agents (particles) which are in its
neighborhood. In this kind of system, it is sometimes useful
to perform a scale change in order to reify structures
corresponding to sets of particles which are in particular
interactions, like an eddy of water for example.

Characterizing the global state of an agents population can
be performed by representing this population in terms of
structures. These structures can be defined by situating each
agent by comparison with the others using their measures.
As said before, each agent gives information about its
internal state by a set of measures. But measures of an agent
can only be interpreted comparing them with the others. This
comparison can be used to determine agents groups
composed of agents sharing similar values of measures. In
some cases, these groups can represent implicit organizations
built by the multiagent system itself during its execution.

To achieve this groups detection, we propose to use dynamic
clustering techniques. In the following paragraph, what we
mean by dynamic clustering of agents is presented and
compared to standard clustering.

Clustering Agents : Diff iculties and Constraints

Clustering (Kaufman and Rousseeuw 1990) a set of objects
consists in finding clusters of objects in this set. A cluster
represents a set of objects which are considered to be similar.
This similarity between objects depends generally on a
distance between objects' attributes, each object being
represented by a vector of attributes. So, standard clustering
algorithms start from a set of objects to produce a set of
clusters. Applying clustering techniques to a set of agents

© SCS

implies to specialize the notion of object. In this context, an
object is the vector of an agent's measures. But agents evolve
continuously during the system execution. This property
strongly modifies the clustering context in two ways :

1. the cardinal of the set of objects to cluster can often
change. Indeed, agents can appear or disappear during
the clustering process;

2. objects already clustered can be modified as their
corresponding agents evolve.

So, a dynamic and incremental clustering method is needed
in order to modify cleverly the set of obtained clusters so that
they can be the more accurate as possible with respect to the
agents population state. Standard clustering methods can not
support this kind of property because they suppose the set of
objects to cluster to be defined at the beginning. A few, like
k-Means algorithm (Jain and Dubes 1988), are incremental
ones. This means that when clusters are obtained, a new
object can be clustered by searching the cluster whose
gravity center is the nearest from the point representing the
new object. Even if this mechanism is useful for our
problem, it is not enough. Indeed, in our context, the
algorithm must also be able to create, destroy or modify
clusters according to the objects evolution. More dynamic
algorithms used for data streams clustering (Barbarà 2002)
meet part of these requirements. These requirements and
algorithms are shortly presented in the next section.

Another constraint our clustering method must satisfy is to
allow an easy integration in a multiagent environment. This
set of constraints led us to consider clustering algorithms
based on ants agents (Lumer and Faieta 1994). As it is
presented in this paper, the main advantages of this kind of
algorithms are to be dynamic and agentified, which satisfies
our constraints. Unfortunately, these algorithms do not
converge quickly enough in most cases. That's why we
propose to add new agents to the ant mechanism whose main
goal is to optimize the convergence.

The next section deals with the ants algorithms principles
and details their advantages and disadvantages. It also
describes requirements and algorithms for data streams
clustering. It finally presents a particular ants algorithm
called AntClass (Monmarché 2000 ; Monmarché et al. 1999)
combining both ants and a second clustering algorithm (k-
Means algorithm). Section 3 finally describes our proposal,
partially based on AntClass.

EXISTING ALGORITHMS

Traditional Algor ithms

Many algorithms were proposed to cluster data. Various
criteria can be used to compare them (cost, convergence,
relevance of the results…). The disadvantage of these
methods is to operate on a set of static data. In our case, the
data are evolutionary. They characterize elements of an
agents organization which can appear, disappear or change.
The ants algorithms seem to be more suited to this kind of
problem.

Ants Algor ithms

From the observation of ants, many research have allowed to
better understand their behavior , like brood sorting or
cemetery organization. (Deneubourg et al. 1990). From this
analysis, clustering algorithms using ants agents have been
defined.
Clustering is based on a kind of aggregation phenomenon.
The basic mechanism underlying this phenomenon is an
attraction between objects mediated by ants: clusters of
objects grow by attracting ants to deposit more objects. To
obtain coherent groups, a measure of dissimilarity between
objects must be used (Lumer and Faieta 1994).
These algorithms have some disadvantages, especially as far
as the number of clusters is concerned. Indeed, they can
build too much clusters. Moreover they often leave isolated
objects which are not clustered. As a consequence, their
convergence is often slow. On the other hand, this kind of
algorithm seems to be promising to take into account the
evolution of data needed in our problem. Indeed, their
behavior gives a kind of “dynamic” property to the
clustering algorithm. For instance, this algorithm gives a
simple way to process new data : they just need to be placed
on the ants grid as if they were initial data. Moreover, as ants
always move, data evolution inside an existing cluster can be
taken into account by an ant visiting the cluster. This ant will
see the cluster evolution as a building error and will t ry to
put too dissimilar objects elsewhere. As it will be presented
in the section focusing on AntClass, ants algorithms provide
potential basic mechanisms to process dynamic data. All the
problem is to find complementary mechanisms in order to
provide a good convergence.

Clustering Data Streams

In a lot of applications, it is necessary to highlight structures
in data sets which are evolutionary. These kind of data sets
are called data streams. This is the case, for example, in the
observation of weather data, the observation of traffic, the
monitoring of a set of sensors, the evolution of an epidemic.
The clustering of agents shares common characteristics with
these applications. The challenge is to design algorithms
which can detect structural changes in data. Such dynamic
clustering methods are proposed in (Barbará and Chen
2000 ; Guha et al. 2000)
Conditions to evaluate these methods have been studied
recently (Barbarà 2002). The compactness of representation,
the incremental processing of new data, and the
identification of new data which can trouble the current
clustering model, are major constraints. The requirement of
compactness is obvious. In the context of agents clustering,
the number of agents is not intended to always grow that’s
why this requirement is satisfied. The incremental processing
requires to avoid an exhaustive comparison between a new
data and all data already clustered. It also requires to place
the new data quickly (linear cost). The ants algorithm
satisfies the first condition but not the second one. The last
requirement means that new structural tendencies can
appear : new clusters can appear, some clusters can
disappear. This requirement needs to enrich the ants
algorithm by complementary techniques in order to offset the
slow convergence of ants.

© SCS

The principle of our approach is to keep ants for their
dynamic characteristic and to give to clusters they build the
capacity to react. The agent approach is the best way to
allot to them such a behavior. The next section describes
AntClass algorithm which is an ants based algorithm. A part
of this algorithm is used as a basis for our approach
presented in the last part of the paper.

AntClass

AntClass (Monmarché et al. 1999 ; Monmarché 2000) is an
ants-based algorithm which couples ants with a more static
algorithm : k-Means. The main idea of this algorithm is to
offset ants lack of convergence using a second algorithm
which is static but gives good results when starting from
relevant initial data partitions. As a consequence, the result
produced by ants is used as a starting point for k-Means
algorithm. More exactly, AntClass works in four steps: the
first and the third steps are based on ant methods, the second
and the fourth are based on k-Means.

In the first step, ants are used to produce initial clusters of
data. At the beginning, data are randomly placed on a grid.
Ants are moving randomly on this grid with a probabili ty to
change their direction. They are able to carry objects (data)
and to put them on heaps. At the end of this process, an
objects heap corresponds to a cluster. When an ant carries an
object and when it moves on a cell containing a heap, it uses
the center object of a heap Ocenter and the Euclidean distance
d(Ot,Ocenter) to compare it with its carried object Ocarried. If
this distance is lower than a constant value, the ant puts
Ocarried on the heap else it moves again on the grid. A carried
object is always dropped after a given iteration number.
When an ant visits a heap and if it doesn’ t carry any object, it
searches the object Odissim which is the farthest from the
center of this heap. If d(Ocenter,Odissim) ≥ Tremove, it catches
Odissim with a given probabili ty. If an ant moves on a cell
containing only one object, this one is taken under a given
probabili ty.
This first step allows to build a first set of clusters but has the
common disadvantages of ants algorithms : the convergence
diff iculties. Indeed, isolated objects can be let on the grid
even after a great number of iterations. Moreover, too much
clusters are generally produced.

The second step aims at improve the result produced by the
first step using k-Means. This algorithm needs initial
partitions of data given by the previous step. This step
allows to relevantly correct and complete ants initial work.
But it generally produces a too big number of clusters. That’s
why ants are used again in a third step in order to reduce the
number of clusters by clusters fusion.

In the third step, an ant carries a heap instead of an object. In
order to do it, heaps are represented by their center object.
So, an ant carries a heap Hcarried and the Euclidean distance
used is d(Ocenter(Hcarried),Ocenter(Hvisited)). If this distance is
lower than a constant value then the two heaps are fused. As
in the first step, a heap is always dropped after a given
number of iterations. That’s why some heaps are not
necessarily fused even if they should be.

In order to correct and complete the previous result, k-Means
is used again in a last step. This time, the algorithm works
only on heaps (they are seen as data) and tries to cluster
heaps.

This algorithm is proved to give good results on static data
(results are given in (Monmarché et al. 1999)). AntClass is
not initially intended to work with dynamic data or data
streams. In (Coma 2002), the ants part of AntClass has been
evaluated on dynamic data. The conclusion is that data
evolution can be taken into account but convergence
problems already mentioned are reinforced. Nevertheless,
the idea used in AntClass consisting in coupling ants with a
second algorithm seems to be a good way to solve this
convergence problem. Unfortunately, AntClass authors have
chosen k-Means. This algorithm gives good results but, even
if it is incremental, it is not dynamic. That is to say data
processed by this algorithm must be defined at the
beginning. New data can only be processed by placing them
in existing clusters. It does not support clusters evolution.
Moreover, with continuously evolving data, the second
algorithm should be launched frequently (not only twice). It
is very difficult to find criteria in order to determine when
using it and how to combine new results with old ones.

As a consequence, in our approach, we have chosen to
couple adapted ants algorithm of AntClass with a more
dynamic layer based on cluster agents presented in the next
section.

OUR APPROACH

This section presents a multiagent architecture for agents
clustering. This architecture couples ants with a second
agents layer called cluster agents. This architecture allows to
cluster evolving data coming from agents properties included
in an observed population. From an agent point of view, this
architecture must provide an abstraction of the observed
agents population in terms of data allowing to perform the
clustering. It also must provide a “real time” representation
of the clusters corresponding to the current global state of the
observed population. From the clustering point of view, this
architecture must allow to manage data which can be
modified, disappear or be added over time.

Figure 1 shows the proposed architecture which consists in
five main components :

- the observed agents population
- the Observer agent
- Ants
- Cluster agents
- The objects list

The next sections describe the different components of this
architecture. The last one shows how this proposal can
answer to requirements associated to data stream clustering
(presented previously).

Observed Agents Population

The agents of this population can be any kind of agent. The
only hypothesis is that they must provide a set of measures to
be observed. These measures are supposed to summarize a

© SCS

state corresponding to a certain point of view on the agents
of the observed population.

Observer Agent

The goal of this agent is to scrutinize the agents population
to observe in order to build a set of data to cluster. A data (an
object) is made of the set of measures provided by each
agent to observe. These data are put together in an objects
list. Each time an agent is created, the observer agent must
create a new data containing its measures and add it to the
objects list. If this agent’s measures change, the observer
agent must also take this evolution into account by
modifying the corresponding object in the objects list. The
observer agent represents an information gateway between
the observed agent layer and the clustering layer.

Ants

They are central in the clustering process. Their behavior is
adapted from those of AntClass. The main difference
concerns their motion. In AntClass, data are put on a grid,
ants move on this grid that’s why clusters are also built on
this grid. In our architecture, data are put in an objects list
and clusters are represented by cluster agents. That’s why
ants move along the list to pick up an object or move inside
the cluster agents organization to add an object to a cluster.

Figure 1 : System Architecture

In “AntClass” , it is possible that ants don’t move on the good
heap for their object (because of random). Therefore, an ant
drops automatically its object in an empty cell after a given
number of iterations. It explains that some data are not
always placed in the good cluster. That explains partially the
convergence problem. In order to reduce this phenomenon,
our ants must visit all existing cluster agents before dropping
their object. Moreover, dropping an object in an empty cell

consists here in creating a new cluster agent containing this
object. Ants move at random among cluster agents.

Ants’ Motion

Each ant begins by picking up a random object in the list.
Then the ant moves inside the cluster agents population in
order to try to drop this object in a “good cluster” agent. As
long as an ant has an object, it moves only inside the cluster
agents population. After having visited the different cluster
agents, if ant has not already dropped its object, it creates a
new cluster agent.
 When an ant visits a cluster agent, it verifies if it is possible
to add its object to the corresponding cluster. This
verification is made using a distance measure like in
AntClass. After its carried object has been dropped, the ant
can come back to the objects lists in order to choose a new
object to cluster.

Cluster Agents

A cluster agent represents a cluster (a set of objects) and its
goal is to verify the relevance of its cluster. First of all , when
an ant drops its carried object in the cluster of a cluster agent
CA, CA must update the value of the cluster center.
Moreover, it has to detect objects (data) evolution. If an
object becomes too different from the cluster center, the
cluster agent must reject it in the objects list and update the
cluster center again. This mechanism allows to set up a kind
of competition between ants and cluster agents. This
competition must help to improve the global convergence of
the clustering.

To evaluate if an object is too dissimilar from the cluster
center, the cluster agent uses a distance measure and a
dissimilarity threshold like in k-Means used by AntClass.
The purpose is to keep a “good cluster” , that is to say it does
not include too dissimilar objects. Let Dmin be the minimum
distance between the cluster center and a cluster object. The
cluster agent must always verify that :

∀i, d(oi,oc) < Dmin with

oi : the i th cluster object

oc: the cluster center.

Cluster Agent Bir th and Death
When an ant can not drop its object in existing clusters, it
must create a new cluster containing this object. This new
cluster agent has a limited life time. Indeed, if it doesn’t
receive any new object during a too long period or if it
rejects too much objects during the same period, the cardinal
of its corresponding cluster becomes too small . In this case,
the cluster agent dies. This allows to take into account data
evolution making some clusters non relevant anymore.
Moreover, just before dying, a cluster agent rejects the
objects of its cluster in the objects list. This mechanism
allows ants to build new clusters more representative of the
new data or the new state of data induced by the evolution of
the observed agents population.

© SCS

The Objects L ist

The objects list allows to store non clustered objects. Two
kinds of objects can be found in this list :
- objects corresponding to new agents which have never

been clustered.
- objects which have been rejected from their initial

cluster by cluster agents.

This structure allows us to manage both new data arrival and
data evolution.

Discussion and Analysis

We have defined a multi-agent clustering method allowing to
cluster evolving data corresponding to properties of agents
belonging to an observed population. Clusters are
represented by cluster agents which evolve with data, taking
into account their evolution. Ants are used to cluster new
data or move rejected data in new clusters. Cluster agents
and ants are in a competition process from which can emerge
a relevant clustering of the current data representing the
global state of the observed agents population.

In (Barbarà 2002), Barbarà has defined three requirements
for data streams clustering algorithms (see section on this
subject). Our problem is not so far from the data streams
clustering problem so it is interesting to see how our
approach meet these requirements.

The first one is the compactness of data and clusters
representation. For data, it depends entirely on the kind of
properties observed in agents. Clusters are represented by
their center point. Moreover, their behavior ensures a
controlled increase of their number. Indeed, if the cardinal of
their corresponding cluster stays too small, they die.

The second one is a fast incremental processing of new data
points. Our own problem requires more than that : a fast
incremental processing of new data points or old data points
modifications. The task of ants ensures an incremental
processing, taking easily new data into account. Data
evolution is detected very quickly thanks to the data reject
mechanism of cluster agents. Nevertheless, in order these
evolutions to be processed quickly, it requires that ants place
the rejected data in new clusters quickly too. This is not
always ensured. However, as ants do not move on a grid but
on an objects list, we can think that rejected objects will be
found by ants more quickly than in AntClass.

The last requirement is the identification of outliers. An
outlier is a new data (or in our context an evolving data)
which can not be placed in any existing cluster. These data
are processed by ants when trying to put their object in a
cluster. In order to achieve this task, they visit each cluster
until they have found a satisfying cluster. If it is not the case,
they create a new cluster agent. In that case, the object
corresponds to an outlier. These outliers can be of two
kinds : new data never clustered or rejected data clustered
before. Indeed, if a cluster agent does not include enough
data during a too long period, it dies. This corresponds to a
part of outliers detection.

CONCLUSION

In this paper, a multi-agent architecture for agents clustering
has been presented. This architecture is based on an ants
algorithm coupled with a cluster agents layer helping ants for
the global convergence of the clustering method. After
having presented the needs for agents clustering and the
associated constraints, we have presented a review of
clustering methods suitable to this context. Methods based
on ants appear to be the most interesting ones. That’s why, as
in AntClass, we have chosen to couple an ants algorithm
with a second agents layer.
This architecture is currently being implemented and the
validation of the clustering method is beginning.

This architecture is currently used in a preventive monitoring
multi-agent system. project (Boukachour et al. 2002). The
goal of this kind of system is to offer to managers the more
relevant information as possible about the current situation in
order to take good decisions. In this context, the agents
population to observe represents different pieces of
information about the analyzed situation. Information are
obtained by interactions with users, by queries on multiple
databases and by sensors. This explains that this agents
population may contain redundant or useless pieces of
information. As the situation evolves, the corresponding
agents modify themselves. We try to use our dynamic
clustering architecture in this context in order to obtain a
synthesized view of the important points of the situation in
order to be able to compare it with similar older situations.
This synthesized view must allow to focus on only highly
relevant information so as to find the best similar situations
which will provide the basis for the decisions to take.

In the future, we think to complete the cluster agents
behavior so as to allow clusters fusion or division. Moreover,
their reject mechanism could be perhaps improved using
fractal dimension of clusters as it is proposed in (Barbarà and
Chen 2000) (instead of the distance measure from the cluster
center as in k-Means). Indeed, in the Fractal Clustering
Algorithm, each cluster has a fractal dimension which is
updated for each new data. A new data is put in the cluster
whose variation of this fractal dimension is the smallest. This
algorithm seems to give good results for data streams. As a
consequence, it should improve clusters agents work.

REFERENCES

Barbarà D. and Chen P 2000. "Using the fractal dimension to
cluster data sets" In Proceedings of the ACM-SIGKDD
International Conference on Knowledge and Data Mining,
Boston.

Barbarà D. 2002. "Requirements for Clustering Data Streams"
SIGKDD Explorations 3, No. 2, 23-27.
Boukachour H., Simon G., Coletta M., Galinho T., Person P. and

Serin F. 2002. "Système de veill e préventive : modélisation par
organisations d' agents" In Proceedings of Ingénierie des
Connaissances (IC'2002), INSA de Rouen, France, 187-195.

Bertelle C., Olivier D., Jay V., Tranouez P. and Cardon A. 2000.
"A multi -agent system integrating vortex methods for fluid flow
computation" In 16th IMACS congress, Lausanne, Switzerland.

Coma R. 2002. '' Dynamic clustering for a multi -agent system”.
DEA report, LIH,.Le Havre, France.

© SCS

Deneubourg J.L. , Goss S., Franks N., Sendova-Franks A., Detrain
C. and Chretien L. 1990. "The dynamics of collective sorting:
robot-like ant and ant-like robots" in Meyer and Wilson, 356-
365.

Ferber J. and Gutknecht O. 1998. "Aaladin : a meta-model for the
analysis and design of organisations in multi -agent systems" In
Proceedings of ICMAS'98, IEEE, 155-176.

Ferber J. and Jacopin E. 1991. "The framework of Eco Problem
Solving " In Proceedings of the 2nd European Workshop on
Modelli ng Autonomous Agents in a Multi -Agent World
(MAAMAW-91)", Elsevier North-Holland, 103-114.

Guha S. ; Mishra N.; Mortwani R.: and O' Callaghan L. 2000.
“Clustering data streams” In Proceedings of the Annual
Symposium on Foundations of Computer Science.

Jain A.K. and Dubes R.C. 1988. Algorithms for Clustering Data
Prentice-Hall Advanced Reference Series.

Kaufman L. And Rousseeuw P.J. 1990. Finding groups in data : an
introduction to cluster analysis. John Wiley and sons, New
York.

Lumer E.D. and Faieta B. 1994. "Diversity and Adaptation in
Populations of Clustering Ants" In proceedings of the third
International Conference on Simulation of Adaptative Behavior
: From Animals to Animats 3 (SAB'94), D. Cli ff , P. Husbands,
J.A. Meyer, S.W. Wilson (Eds), MIT-Press, 501-508.

Marcenac P. 1997. "Modélisation de systèmes complexes par
agents" Techniques et Sciences Informatiques 16, No. 8,
Hermès, 1013-1038.

Monmarché N. 2000. "Algorithmes de fourmis artificielles :
applications à la classification et à l' optimisation" PhD Thesis,
Tours, France.

Monmarché N.; Slimane M. and Venturini G. 1999. "AntClass :
discovery of clusters in numeric data by an hybridization of an
ant colony with the Kmeans algorithm”, Research report 213,
Laboratoire d’Informatique de l’Université de Tours, E3i Tours.

© SCS

	c0: Proceedings 4th Workshop on Agent-Based Simulation
J.-P. Müller, M.-M. Seidel ©SCS Europe BVBA, 2003

